201 research outputs found

    Reduced basis method for source mask optimization

    Full text link
    Image modeling and simulation are critical to extending the limits of leading edge lithography technologies used for IC making. Simultaneous source mask optimization (SMO) has become an important objective in the field of computational lithography. SMO is considered essential to extending immersion lithography beyond the 45nm node. However, SMO is computationally extremely challenging and time-consuming. The key challenges are due to run time vs. accuracy tradeoffs of the imaging models used for the computational lithography. We present a new technique to be incorporated in the SMO flow. This new approach is based on the reduced basis method (RBM) applied to the simulation of light transmission through the lithography masks. It provides a rigorous approximation to the exact lithographical problem, based on fully vectorial Maxwell's equations. Using the reduced basis method, the optimization process is divided into an offline and an online steps. In the offline step, a RBM model with variable geometrical parameters is built self-adaptively and using a Finite Element (FEM) based solver. In the online step, the RBM model can be solved very fast for arbitrary illumination and geometrical parameters, such as dimensions of OPC features, line widths, etc. This approach dramatically reduces computational costs of the optimization procedure while providing accuracy superior to the approaches involving simplified mask models. RBM furthermore provides rigorous error estimators, which assure the quality and reliability of the reduced basis solutions. We apply the reduced basis method to a 3D SMO example. We quantify performance, computational costs and accuracy of our method.Comment: BACUS Photomask Technology 201

    Electronic inhomogeneity in EuO: Possibility of magnetic polaron states

    Full text link
    We have observed the spatial inhomogeneity of the electronic structure of a single-crystalline electron-doped EuO thin film with ferromagnetic ordering by employing infrared magneto-optical imaging with synchrotron radiation. The uniform paramagnetic electronic structure changes to a uniform ferromagnetic structure via an inhomogeneous state with decreasing temperature and increasing magnetic field slightly above the ordering temperature. One possibility of the origin of the inhomogeneity is the appearance of magnetic polaron states.Comment: 4 pages, 3 figure

    Natriuretic peptides and integrated risk assessment for cardiovascular disease. an individual-participant-data meta-analysis

    Get PDF
    BACKGROUND: Guidelines for primary prevention of cardiovascular diseases focus on prediction of coronary heart disease and stroke. We assessed whether or not measurement of N-terminal-pro-B-type natriuretic peptide (NT-proBNP) concentration could enable a more integrated approach than at present by predicting heart failure and enhancing coronary heart disease and stroke risk assessment. METHODS: In this individual-participant-data meta-analysis, we generated and harmonised individual-participant data from relevant prospective studies via both de-novo NT-proBNP concentration measurement of stored samples and collection of data from studies identified through a systematic search of the literature (PubMed, Scientific Citation Index Expanded, and Embase) for articles published up to Sept 4, 2014, using search terms related to natriuretic peptide family members and the primary outcomes, with no language restrictions. We calculated risk ratios and measures of risk discrimination and reclassification across predicted 10 year risk categories (ie, <5%, 5% to <7·5%, and ≥7·5%), adding assessment of NT-proBNP concentration to that of conventional risk factors (ie, age, sex, smoking status, systolic blood pressure, history of diabetes, and total and HDL cholesterol concentrations). Primary outcomes were the combination of coronary heart disease and stroke, and the combination of coronary heart disease, stroke, and heart failure. FINDINGS: We recorded 5500 coronary heart disease, 4002 stroke, and 2212 heart failure outcomes among 95 617 participants without a history of cardiovascular disease in 40 prospective studies. Risk ratios (for a comparison of the top third vs bottom third of NT-proBNP concentrations, adjusted for conventional risk factors) were 1·76 (95% CI 1·56-1·98) for the combination of coronary heart disease and stroke and 2·00 (1·77-2·26) for the combination of coronary heart disease, stroke, and heart failure. Addition of information about NT-proBNP concentration to a model containing conventional risk factors was associated with a C-index increase of 0·012 (0·010-0·014) and a net reclassification improvement of 0·027 (0·019-0·036) for the combination of coronary heart disease and stroke and a C-index increase of 0·019 (0·016-0·022) and a net reclassification improvement of 0·028 (0·019-0·038) for the combination of coronary heart disease, stroke, and heart failure. INTERPRETATION: In people without baseline cardiovascular disease, NT-proBNP concentration assessment strongly predicted first-onset heart failure and augmented coronary heart disease and stroke prediction, suggesting that NT-proBNP concentration assessment could be used to integrate heart failure into cardiovascular disease primary prevention

    Decrease in p3-Alcb37 and p3-Alcb40, products of Alcadein b generated by g-secretase cleavages, in aged monkeys and patients with Alzheimer’s disease

    Get PDF
    Introduction Neuronal p3-Alcβ peptides are generated from the precursor protein Alcadein β (Alcβ) through cleavage by α- and γ-secretases of the amyloid β (Aβ) protein precursor (APP). To reveal whether p3-Alcβ is involved in Alzheimer\u27s disease (AD) contributes for the development of novel therapy and/or drug targets. Methods We developed new sandwich enzyme-linked immunosorbent assay (sELISA) systems to quantitate levels of p3-Alcβ in the cerebrospinal fluid (CSF). Results In monkeys, CSF p3-Alcβ decreases with age, and the aging is also accompanied by decreased brain expression of Alcβ. In humans, CSF p3-Alcβ levels decrease to a greater extent in those with AD than in age-matched controls. Subjects carrying presenilin gene mutations show a significantly lower CSF p3-Alcβ level. A cell study with an inverse modulator of γ-secretase remarkably reduces the generation of p3-Alcβ37 while increasing the production of Aβ42. Discussion Aging decreases the generation of p3-Alcβ, and further significant decrease of p3-Alcβ caused by aberrant γ-secretase activity may accelerate pathogenesis in AD

    Decrease in p3-Alcb37 and p3-Alcb40, products of Alcadein b generated by g-secretase cleavages, in aged monkeys and patients with Alzheimer’s disease

    Get PDF
    Introduction Neuronal p3-Alcβ peptides are generated from the precursor protein Alcadein β (Alcβ) through cleavage by α- and γ-secretases of the amyloid β (Aβ) protein precursor (APP). To reveal whether p3-Alcβ is involved in Alzheimer\u27s disease (AD) contributes for the development of novel therapy and/or drug targets. Methods We developed new sandwich enzyme-linked immunosorbent assay (sELISA) systems to quantitate levels of p3-Alcβ in the cerebrospinal fluid (CSF). Results In monkeys, CSF p3-Alcβ decreases with age, and the aging is also accompanied by decreased brain expression of Alcβ. In humans, CSF p3-Alcβ levels decrease to a greater extent in those with AD than in age-matched controls. Subjects carrying presenilin gene mutations show a significantly lower CSF p3-Alcβ level. A cell study with an inverse modulator of γ-secretase remarkably reduces the generation of p3-Alcβ37 while increasing the production of Aβ42. Discussion Aging decreases the generation of p3-Alcβ, and further significant decrease of p3-Alcβ caused by aberrant γ-secretase activity may accelerate pathogenesis in AD

    Arabidopsis thaliana PGR7 Encodes a Conserved Chloroplast Protein That Is Necessary for Efficient Photosynthetic Electron Transport

    Get PDF
    A significant fraction of a plant's nuclear genome encodes chloroplast-targeted proteins, many of which are devoted to the assembly and function of the photosynthetic apparatus. Using digital video imaging of chlorophyll fluorescence, we isolated proton gradient regulation 7 (pgr7) as an Arabidopsis thaliana mutant with low nonphotochemical quenching of chlorophyll fluorescence (NPQ). In pgr7, the xanthophyll cycle and the PSBS gene product, previously identified NPQ factors, were still functional, but the efficiency of photosynthetic electron transport was lower than in the wild type. The pgr7 mutant was also smaller in size and had lower chlorophyll content than the wild type in optimal growth conditions. Positional cloning located the pgr7 mutation in the At3g21200 (PGR7) gene, which was predicted to encode a chloroplast protein of unknown function. Chloroplast targeting of PGR7 was confirmed by transient expression of a GFP fusion protein and by stable expression and subcellular localization of an epitope-tagged version of PGR7. Bioinformatic analyses revealed that the PGR7 protein has two domains that are conserved in plants, algae, and bacteria, and the N-terminal domain is predicted to bind a cofactor such as FMN. Thus, we identified PGR7 as a novel, conserved nuclear gene that is necessary for efficient photosynthetic electron transport in chloroplasts of Arabidopsis

    A Chaperonin Subunit with Unique Structures Is Essential for Folding of a Specific Substrate

    Get PDF
    Type I chaperonins are large, double-ring complexes present in bacteria (GroEL), mitochondria (Hsp60), and chloroplasts (Cpn60), which are involved in mediating the folding of newly synthesized, translocated, or stress-denatured proteins. In Escherichia coli, GroEL comprises 14 identical subunits and has been exquisitely optimized to fold its broad range of substrates. However, multiple Cpn60 subunits with different expression profiles have evolved in chloroplasts. Here, we show that, in Arabidopsis thaliana, the minor subunit Cpn60β4 forms a heterooligomeric Cpn60 complex with Cpn60α1 and Cpn60β1–β3 and is specifically required for the folding of NdhH, a subunit of the chloroplast NADH dehydrogenase-like complex (NDH). Other Cpn60β subunits cannot complement the function of Cpn60β4. Furthermore, the unique C-terminus of Cpn60β4 is required for the full activity of the unique Cpn60 complex containing Cpn60β4 for folding of NdhH. Our findings suggest that this unusual kind of subunit enables the Cpn60 complex to assist the folding of some particular substrates, whereas other dominant Cpn60 subunits maintain a housekeeping chaperonin function by facilitating the folding of other obligate substrates

    Association of anthropometry and weight change with risk of dementia and its major subtypes : A meta-analysis consisting 2.8 million adults with 57 294 cases of dementia

    Get PDF
    Uncertainty exists regarding the relation of body size and weight change with dementia risk. As populations continue to age and the global obesity epidemic shows no sign of waning, reliable quantification of such associations is important. We examined the relationship of body mass index, waist circumference, and annual percent weight change with risk of dementia and its subtypes by pooling data from 19 prospective cohort studies and four clinical trials using meta-analysis. Compared with body mass index-defined lower-normal weight (18.5-22.4 kg/m(2)), the risk of all-cause dementia was higher among underweight individuals but lower among those with upper-normal (22.5-24.9 kg/m(2)) levels. Obesity was associated with higher risk in vascular dementia. Similarly, relative to the lowest fifth of waist circumference, those in the highest fifth had nonsignificant higher vascular dementia risk. Weight loss was associated with higher all-cause dementia risk relative to weight maintenance. Weight gain was weakly associated with higher vascular dementia risk. The relationship between body size, weight change, and dementia is complex and exhibits non-linear associations depending on dementia subtype under scrutiny. Weight loss was associated with an elevated risk most likely due to reverse causality and/or pathophysiological changes in the brain, although the latter remains speculative.Peer reviewe

    Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii

    Get PDF
    To prevent photodamage by excess light, plants use different proteins to sense pH changes and to dissipate excited energy states. In green microalgae, however, the LhcSR3 gene product is able to perform both pH sensing and energy quenching functions

    Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies.

    Get PDF
    The health effects of omega-3 fatty acids have been controversial. Here we report the results of a de novo pooled analysis conducted with data from 17 prospective cohort studies examining the associations between blood omega-3 fatty acid levels and risk for all-cause mortality. Over a median of 16 years of follow-up, 15,720 deaths occurred among 42,466 individuals. We found that, after multivariable adjustment for relevant risk factors, risk for death from all causes was significantly lower (by 15-18%, at least p < 0.003) in the highest vs the lowest quintile for circulating long chain (20-22 carbon) omega-3 fatty acids (eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids). Similar relationships were seen for death from cardiovascular disease, cancer and other causes. No associations were seen with the 18-carbon omega-3, alpha-linolenic acid. These findings suggest that higher circulating levels of marine n-3 PUFA are associated with a lower risk of premature death.The EPIC Norfolk study (DOI 10.22025/2019.10.105.00004) has received funding from the Medical Research Council (MR/N003284/1 and MC-UU_12015/1) and Cancer Research UK (C864/A14136). NJW, NGF, and FI were supported by the Medical Research Council Epidemiology Unit core funding [MC_UU_12015/1 and MC_UU_12015/5]. NJW and NGF acknowledge support from the National Institute for Health Research Cambridge Biomedical Research Centre [IS-BRC-1215-20014] and NJW is an NIHR Senior Investigator
    corecore